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MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 

DEPARTMENT OF INFORMATION TECHNOLOGY 

UNIT -1 
 

Fundamentals 

 

Symbol – An atomic unit, such as a digit, character, lower-case letter, etc. 

Sometimesa word.[Formal language does not deal with the “meaning” of 

thesymbols.] 

 

Alphabet – A finite set of symbols, usually denoted byΣ. 

Σ ={0, 1} 

Σ = {0, a,9, 4} 

Σ = {a, b, c,d} 

 

String – A finite length sequence of symbols, presumably from some 

alphabet. w=0110 

y=0aa 

x=aabcaa 

z = 111 

 

Special string: ε (also denoted by λ) 

Concatenation: wz = 0110111  

Length: 

Reversal: 

|w| = 4 

yR = aa0 

|ε| = 0 |x| = 6 

 

Some special sets ofstrings: 

Σ* All strings of symbols fromΣ 

Σ+  Σ* -{ε} 

Example: Σ = {0,1} 

Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…} 

Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,…} 

A languageis: 
A set of strings from some alphabet (finite or infinite). In otherwords, 

Any subset L ofΣ* 

Some speciallanguages: 

{}The empty set/language, containing nostring. 

{ε}A language containing one string, the emptystring. 

 

Examples: 

Σ = {0,1} 

L = {x | x is in Σ* and x contains an even number of 0‟s} 

Σ = {0, 1, 2,…, 9, .} 

L = {x | x is in Σ* and x forms a finite length real number} 
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= {0, 1.5, 9.326,…} 

 

Σ = {a, b, c,…, z, A, B,…, Z} 

L = {x | x is in Σ* and x is a Pascal reserved word} 

= {BEGIN, END, IF,…} 

 

Σ = {Pascal reserved words} U { (, ), ., :, ;,…} U {Legal Pascal identifiers} L = {x | x is in Σ
* 

and x is a 
syntactically correct Pascal program} 

 
Σ = {English words} 

L = {x | x is in Σ
* 

and x is a syntactically correct English sentence} 

 
Regular Expression 

• A regular expression is used to specify a language, and it does soprecisely. 

• Regular expressions are veryintuitive. 

• Regular expressions are very useful in a variety ofcontexts. 

• Given a regular expression, an NFA-ε can be constructed from itautomatically. 

• Thus, so can an NFA, a DFA, and a corresponding program, allautomatically! 

Definition: 

Let Σ be an alphabet. The regular expressions over Σare: 
Ø Represents the empty set {} 

Ε Represents the set{ε} 

Represents the set {a}, for any symbol a inΣ 
Let r and s be regular expressions that represent the sets R and S, respectively. 

r+sRepresents the set RUS (precedence3) 

rsRepresents thesetRS (precedence2) 

r* Represents thesetR* (highest precedence) 

(r) Represents thesetR (not an op, providesprecedence) 
If r is a regular expression, then L(r) is used to denote the correspondinglanguage. 

 

Examples: 

Let Σ = {0,1} 
(0 +1)* All strings of 0‟s and1‟s0(0 +1)* All strings of 0‟s and 1‟s, beginning with a0 

(0 +1)*1 All strings of 0‟s and 1‟s, ending with a1 

(0 + 1)*0(0+1)* All strings of 0‟s and 1‟s containing at least one 0 (0 + 1)*0(0 + 1)*0(0+1)* All 

strings of 0‟s and 1‟s containing at least two 

0‟s (0+1)*01*01* All strings of 0‟s and 1‟s containing at least two 

0‟s (101*0)* All strings of 0‟s and 1‟s containing an even number of 0‟s 

1*(01*01*)* All strings of 0‟s and 1‟s containing an even number of 0‟s 

(1*01*0)*1* All strings of 0‟s and 1‟s containing an even number of0‟s 

Identities: 
 

1. Øu = uØ=Ø Multiply by0 
 

2. εu = uε=u Multiply by1 
 

3. Ø* =ε 
 

4. ε* =ε 
 

5. u+v =v+u 
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6. u + Ø =u 

 

7. u + u = u 

8. u* =(u*)* 

9. u(v+w) =uv+uw 

 

10. (u+v)w =uw+vw 

 

11. (uv)*u = u(vu)* 

 

12. (u+v)* = (u*+v)* 
 

=u*(u+v)* 

 

=(u+vu*)* 

= (u*v*)* 

 

=u*(vu*)* 

 

=(u*v)*u*  

Finite State Machines 

A finite state machine has a set of states and two functions called the next-state 

function and the outputfunction 

The set of states correspond to all the possible combinations of the internal storage 

If there are n bits of storage, there are 2n possiblestates 

The next state function is a combinational logic function that given the inputs and the 

current state, determines the next state of thesystem 

The output function produces a set of outputs from the current state and theinputs 

 

 There are two types of finite statemachines 

 In a Moore machine, the output only depends on the currentstate 

 While in a Mealy machine, the output depends both the current state and the currentinput 

 We are only going to deal with the Mooremachine. 

 These two types are equivalent incapabilities 

A Finite State Machine consistsof: 
Kstates:S = {s1, s2, … ,sk}, s1 is initial state Ninputs:I = {i1, 

i2, …,in} 

Moutputs:O = {o1, o2, …,om} 

Next-state function T(S, I) mapping each current state and input to next state Output Function 

P(S) specifies output 

Finite Automata 

 

 Two types – both describe what are called regularlanguages 

• Deterministic (DFA) – There is a fixed number of states and we can 

only bein one state at atime 
 
 



Automata & Compiler Design Page 8 
 

• Nondeterministic (NFA) –There is a fixed number of states but wcan bein 

multiple states at onetime 

 

 While NFA‟s are more expressive than DFA‟s, we will see that 
addingnondeterminism does not let us define any language that cannot be 

defined by aDFA. 

 

 One way to think of this is we might write a program using a NFA, but 

then when it is “compiled” we turn the NFA into an equivalentDFA. 

 

Formal Definition of a Finite Automaton 
 

• Finite set of states, typicallyQ. 

• Alphabet of input symbols, typically∑ 

• One state is the start/initial state, typically q0 // q0 ∈Q 

• Zero or more final/accepting states; the set is typically F. // F⊆Q 

• A transition function, typicallyδ. Thisfunction 
• Takes a state and input symbol asarguments. 

 

Deterministic Finite Automata (DFA) 

 

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, F) 

Q=A finite set ofstates 

Σ=A finite inputalphabet 

q0=The initial/starting state, q0 is inQ 

F=A set of final/accepting states, which is a subset ofQ 

Δ=A transition function, which is a total function from Q x Σ toQ 

δ: (Q x Σ)–>Q δ is defined for any q in Q and s in Σ, and δ(q,s)=q‟is equal to another 

state q‟ inQ. 

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q. 

 

 

 

• LetM=(Q,Σ,δ,q,F)beaDFAandletwbeinΣ*.ThenwisacceptedbyMiff 
0 
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δ(q ,w) = p for some state p in F. 
0 

• Let M = (Q, Σ, δ, q , F) be a DFA. Then the language accepted by M is theset: 
0 

L(M) = {w | w is in Σ* and δ(q ,w) is in F} 

 
 

• Another equivalentdefinition: 

L(M) = {w | w is in Σ* and w is accepted by M} 

 
• Let L be a language. Then L is a regular language iff there exists a DFA 

M such that L =L(M). 

 
Notes: 

• A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: 

L(M)and Σ* -L(M). 

 

• If L = L(M) then L is a subset of L(M) and L(M) is a subset ofL. 

 

• Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a 

subset of L(M1). 

 

• Some languages are regular, others are not. For example,if 

L1 = {x | x is a string of 0's and 1's containing an even number of 1's} and L2 = {x | x = 0n1n 

for some n >= 0}then L1 is regular but L2 is not. 
 

 

 

 

 
Nondeterministic Finite Automata (NFA) 

An NFA is a five-tuple: M = (Q, Σ, δ, q0,F) 
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Q A finite set ofstates 

Σ A finite inputalphabet 

q0 The initial/starting state, q0 is inQ 

F A set of final/accepting states, which is a subset ofQ 

δ A transition function, which is a total function from Q x Σ to2Q 

δ: (Q x Σ)->2Q -2Q is the power set of Q, the set of all subsets of Q δ(q,s) -The set of 

all states p such that there is atransition 

labeled s from q to p δ(q,s) is a function from Q x S to 2Q (but not to Q)  

Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is accepted by 

M iffδ({q0}, w) contains at least one state inF. 

Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M is 

theset: L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state inF} 

Another equivalentdefinition: 
L(M) = {w | w is in Σ* and w is accepted by M} 
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Conversion from NFA to DFA 

Suppose there is an NFA N < Q, ∑, q0, δ, F > which recognizes a language L. Then the DFA D < 

Q‟, ∑, q0, δ‟, F‟ > can be constructed for language L as: 

Step 1: Initially Q‟ = ɸ. 

Step 2: Add q0 to Q‟. 

Step 3: For each state in Q‟, find the possible set of states for each input symbol using transition 

function of NFA. If this set of states is not in Q‟, add it to Q‟. 

Step 4: Final state of DFA will be all states with contain F (final states of NFA) 
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Example 

Consider the following NFA shown in Figure 1. 
 

 
 

Following are the various parameters for NFA. 

Q = { q0, q1, q2 } 

∑ = ( a, b ) 

F = { q2 } 

δ (Transition Function of NFA) 

 

 
Step 1: Q‟ = ɸ 

Step 2: Q‟ = {q0} 

Step 3: For each state in Q‟, find the states for each input symbol. 

Currently, state in Q‟ is q0, find moves from q0 on input symbol a and b using transition function of 

NFA and update the transition table of DFA 

δ‟ (Transition Function of DFA) 
 

Now { q0, q1 } will be considered as a single state. As its entry is not in Q‟, add it to Q‟. 

So Q‟ = { q0, { q0, q1 } } 

Now, moves from state { q0, q1 } on different input symbols are not present in transition table of 

DFA, we will calculate it like: 

δ‟ ( { q0, q1 }, a ) = δ ( q0, a ) ∪ δ ( q1, a ) = { q0, q1 } 

δ‟ ( { q0, q1 }, b ) = δ ( q0, b ) ∪ δ ( q1, b ) = { q0, q2 } 

Now we will update the transition table of DFA. 
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δ‟ (Transition Function of DFA) 

 

 
Now { q0, q2 } will be considered as a single state. As its entry is not in Q‟, add it to Q‟. 

So Q‟ = { q0, { q0, q1 }, { q0, q2 } } 

Now, moves from state {q0, q2} on different input symbols are not present in transition table of 

DFA, we will calculate it like: 

δ‟ ( { q0, q2 }, a ) = δ ( q0, a ) ∪ δ ( q2, a ) = { q0, q1 } 

δ‟ ( { q0, q2 }, b ) = δ ( q0, b ) ∪ δ ( q2, b ) = { q0 } 

Now we will update the transition table of DFA. 

δ‟ (Transition Function of DFA) 
 

As there is no new state generated, we are done with the conversion. Final state of DFA will be state 

which has q2 as its component i.e., { q0, q2 } 

Following are the various parameters for DFA. 

Q‟ = { q0, { q0, q1 }, { q0, q2 } } 

∑ = ( a, b ) 

F = { { q0, q2 } } and transition function δ‟ as shown above. The final DFA for above NFA has been 

shown in Figure 2. 
 

 

Note : Sometimes, it is not easy to convert regular expression to DFA. First you can convert regular 

expression to NFA and then NFA to DFA 
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Application of Finite state machine and regular expression in Lexical analysis: Lexical 

analysis is the process of reading the source text of a program and converting that source code into a 

sequence of tokens. The approach of design a finite state machine by using regular expression is so 

useful to generates token form a given source text program. Since the lexical structure of more or 

less every programming language can be specified by a regular language, a common way to 

implement a lexical analysis is to; 1. Specify regular expressions for all of the kinds of tokens in the 

language. The disjunction of all of the regular expressions thus describes any possible token in the 

language. 2. Convert the overall regular expression specifying all possible tokens into a deterministic 

finite automaton (DFA). 3. Translate the DFA into a program that simulates the DFA. This program 

is the lexical analyzer. To recognize identifiers, numerals, operators, etc., implement a DFA in code. 

State is an integer variable, δ is a switch statement Upon recognizing a lexeme returns its lexeme, 

lexical class and restart DFA with next character in source code. 

 
CONTEXT FREE-GRAMMAR 

 

Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P,S) 

Where, 
 

V -A finite set of variables ornon-terminals 

T -A finite set of terminals (V and T do not intersect) 

P -A finite set of productions, each of the form A –>α, 

Where A is in V and α is in (V U T)* 

Note: that α may be ε. 

S -A starting non-terminal (S is inV) 
 

Example :CFG: 

 
G = ({S}, {0, 1}, P, S) P: 

S–>0S1 or just simply S –> 0S1 |ε 

S –>ε 

ExampleDerivations: 

 
S => 0S1 (1) 

S => ε (2) 
 => 01 (2) 

S => 0S1 (1) 
 => 00S11 (1) 
 => 000S111 (1) 
 => 000111 (2) 

 

• Note that G “generates” the language {0k1k |k>=0} 

 

 

Derivation (or Parse) Tree 

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) treeif: 

– Every vertex has a label from V U T U{ε} 

– The label of the root isS 

– If a vertex with label A has children with labels X1, 

X2,…, Xn, from left to right, then 
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synchronizing set. The Usage of FOLLOW and FIRST symbols as synchronizing tokens works 

reasonably well when expressions are parsed. 

 

For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and then 

fill the rest of the columns with error term. 

Terminals 
A –> X1, X2,…, Xn 

must be a production in P 

The first L stands for “Left-to-right scan of input”. The second L stands for “Left-most 

derivation”. The „1‟ 

 

stands for “1 token of look ahead”. 

No LL (1) grammar can be ambiguous or left recursive. 

LL (1) Grammar: 

• If a vertex has label ε, then that vertex is a leaf and the only child of its‟parent 
• More Generally, a derivation tree can be defined with any non-terminal as theroot. 

Notes: 

• Root can be anynon-terminal 

• Leaf nodes can be terminals ornon-terminals 

If there were no multiple entries in the Recursive decent parser table, the given grammar is 

LL (1). 

If the grammar G is ambiguous, left recursive then the recursive decent table will have atleast 

one multiply defined entry. 

The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which production to 

use. 

Error Recovery in Predictive Parser: 

Error recovery is based on the idea of skipping symbols on the input until a token in a 

selected set of synchronizing tokens appear. Its effectiveness depends on the choice of 

• A derivation tree with root S shows the productions used to obtain a sentential 

form. 
 

 

 

 
 

 

 

 

 

 

 
 



Automata & Compiler Design Page 19 
 

LL(k) 

LL(k) grammar performs a top-down, leftmost parse after reading the string from left-to-right 

Here, kk is the number of look-aheads allowed. 

With the knowledge of kk look-aheads, we 

calculate FIRSTkFIRSTk and FOLLOWkFOLLOWk where: 

If the parser looks up entry in the table as synch, then the non terminal on top of the stack is 

popped in an attempt to resume parsing. If the token on top of the stack does not match the input 

symbol, then pop the token from the stack. 
 

The moves of a parser and error recovery on the erroneous input) id*+id is as follows:  

 FIRSTkFIRSTk: kk terminals that can be at the beginning of a derived non-terminal 
 FOLLOWkFOLLOWk: kk terminals that can come after a derived non-terminal 

The basic idea is to create a lookup table using this information from which the parser can then 

simply go and check what derivation is to be made given a certain input token. 
 

Now, the following text from here explains strong LL(k)LL(k): 

In the general case, the LL(k)LL(k) grammars are quite difficult to parse directly. This is due to the 

fact that the left context of the parse must be remembered somehow. 

Each parsing decision is based both on what is to come as well as on what has 

already been seen of the input. 

The class of LL(1)LL(1) grammars are so easily parsed because it is 

strong. The strong LL(kLL(k) grammars are a subset of the LL(k)LL(k) grammars that can be 

parsed without knowledge of the left-context of the parse. That is, each parsing decision is based 

only on the next k tokens of the input for the current nonterminal that is being expanded. 

Formally, 
 

A grammar (G=N,T,P,S)(G=N,T,P,S) is strong if for any two distinct A-productions in the grammar: 

A→αA→α 

A→βA→β 

FIRSTk(αFOLLOWk(A))∩FIRSTk(βFOLLOWk(A))=∅FIRSTk(αFOLLOWk(A))∩FIRSTk(βFOL 

LOWk(A))=∅ 
That looks complicated so we‟ll see it another way. Let‟s take a textbook example to understand, 

instead, when is some grammar “weak” or when exactly would we need to know the left-context of 

the parse. 
 

S→aAaS→aAa 

S→bAbaS→bAba 

A→bA→b 

A→ϵA→ϵ 

Here, you‟ll notice that for an LL(2)LL(2) instance, baba could result from either of 

the SSproductions. So the parser needs some left-context to decide whether baba is produced 

by S→aAaS→aAa or S→bAbaS→bAba. 

Such a grammar is therefore “weak” as opposed to being a strong LL(k)LL(k) grammar. 
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E then S Clse 

Unit-II 
 

BOTTOM UPPARSING: 

Bottom-up parser builds a derivation by working from the input sentence back towards the start 

symbol S. Right most derivation in reverse order is done in bottom-up parsing. 

(The point of parsing is to construct a derivation. A derivation consists of a series of 

rewrite steps) 

Sr0r1r2- - - rn- 

 

1rnsentence Bottom-up 

Assuming the production A, to reduce ri ri-1 match some RHS  against ri then replace  with 

its corresponding LHS, A.In terms of the parse tree, this is working from leaves to root.  

Example – 1: 

Sif E then S else S/while E do S/ 

print E true/ False/id 

Input: if id then while true do print else print. 

Parse tree: 

Basicidea: Given input string a, “reduce” it to the goal (start) symbol, by looking for substring 

that match productionRHS. 

S 

 
 
 
 

 
If S 

 

 

 
true 

While E 

| 

do S 

 

 

 if E then S elseS 

lm 

 if id then S elseS 

lm 

 if id then while E do S elseS 

lm 

 if id then while true do S elseS 

lm 

 if id then while true do print elseS 

lm 
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 if id then while true do print elseprint 

lm 

 if E then while true do print elseprint 

rm 

 if E then while E do print elseprint 

rm 

 if E then while E do S elseprint 
rm 

 if E then S elseprint 
rm 

 if E then S elseS 
rm 

 S 
rm 

 

HANDLE PRUNING: 

Keep removing handles, replacing them with corresponding LHS of production, until we reach S. 

Example: 

EE+E/E*E/(E)/id 

 

Right-sentential form Handle Reducing production 

a+b*c A Eid 

E+b*c B Eid 

 

 
E+E*C C Eid 

E+E*E E*E EE*E 

E+E E+E EE+E 

E   

 

The grammar is ambiguous, so there are actually two handles at next-to-last step. We can use parser- 

generators that compute the handles for us 

 

 

 

LR PARSINGINTRODUCTION: 

The "L" is for left-to-right scanning of the input and the "R" is for constructing a 

rightmost derivation in reverse. 
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WHY LR-PARSING: 

1. LRparsers can be constructed to recognize virtually all programming-language 

constructs for which context-free grammarscan be written. 

2. TheLRparsing method is the most general non-backtracking shift- reduce parsing 

method known, yetitcanbeimplementedas efficiently as other shift-reducemethods. 

3. The class of grammars that can be parsed using LR methods is a proper subset of 

the class of grammars that can be parsed with predictiveparsers. 

4,AnLR parser can detect a syntactic error as soon as it is possible to do so on a left- 

to-right scan of theinput. 

The disadvantage is that it takes too much work to  constuct  an  LR  parser  by hand 

for a typical programming-language grammar. But there are lots of LR parser 

generators available to make this taskeasy. 

 

LR-PARSERS: 

LR(k) parsers are most general non-backtracking shift-reduce parsers. Two cases of interest are 

k=0 and k=1. LR(1) is of practical relevance. 

„L‟stands for “Left-to-right” scan of input. 

„R‟ stands for “Rightmost derivation (in reverse)”. 

 

K‟standsfornumber ofinput symbolsoflook-a-head thatareusedin makingparsingdecisions.When 

(K) is omitted, „K‟is assumed to be 1. 

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for 

handle recognition. 
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LR(1) parsers recognize languages that have an LR(1) grammar. 

A grammar is LR(1) if, given a right-most derivation 

Sr0r1r2- - - rn-1rnsentence. 

We can isolate the handle of each right-sentential form ri and determine the production by which 

to reduce, by scanning ri from left-to-right, going atmost 1 symbol beyond the right end of the 

handle of ri. 

Parser accepts input when stack contains only the start symbol and no remaining input symbol 

areleft. 

LR(0)item: (no lookahead) 

Grammar rule combined with a dot that indicates a position in its RHS. 

Ex– 1: SI .S$ 

S. 

x S.(L) 

Ex-2: AXYZ generates 4LR(0) items 

A.XYZ 

AX. 

YZ AXY. 

Z AXYZ. 

AXY.Z indicates that the parser has seen a string derived from XY and is looking for one 

derivable from Z. 

 LR(0) items play a key role in the SLR(1) table constructionalgorithm. 

 LR(1) items play a key role in the LR(1) and LALR(1) table 

constructionalgorithms. LR parsers have more information available than LL 

parsers when choosing aproduction: 

*  LR knowseverything derived fromRHS plus„K‟lookaheadsymbols. 

*  LL just knows„K‟lookaheadsymbols into what‟sderived fromRHS. 

*  Deterministic context free languages: 

* 

* 

*  LR (1) languages 

* 

* 

 
 

LALR PARSING: 

Example: 
 

Construct C={I0,I1,… ........ ,In} The collection of sets of LR(1)items 

For each core present among the set of LR (1) items, find all sets having that core, and replace 

there sets by their Union# (clus them into a singleterm) 
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I0 same asprevious 

I1  “ 

I2  “ 

I36 – Clubbing item I3 and I6 into one I36 item. 

C cC,c/d/$ 

CcC,c/d/$ 

Cd,c/d/$ 

I5some as previous 

I47Cd,c/d/$ 

I89CcC, c/d/$ 

 

LALR Parsing table construction: 

 

State 
Action Goto 

c d $ S C 

Io S36 S47  1 2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 r3 r3    

5   r1   

89 r2 r2 r2   

 

Ambiguous grammar: 

 

A CFG is said to ambiguous if there exists more than one derivation tree for the given input string 

i.e., more than one LeftMost Derivation Tree (LMDT) or RightMost Derivation Tree (RMDT). 

 

Definition: G = (V,T,P,S) is a CFG is said to be ambiguous if and only if there exist a string in T* 

that has more than on parse tree. 

where V is a finite set of variables. 

T is a finite set of terminals. 

P is a finite set of productions of the form, A -> α, where A is a variable and α ∈ (V ∪ T)* S is a 

designated variable called the start symbol. 

 

For Example: 

 

1. Let us consider this grammar : E ->E+E|id 

We can create 2 parse tree from this grammar to obtain a string id+id+id : 

The following are the 2 parse trees generated by left most derivation: 
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Both the above parse trees are derived from same grammar rules but both parse trees are different. 

Hence the grammar is ambiguous. 

YACC PROGRAMMING 

A parser generator is a program that takes as input a specification of a syntax, and produces as 

output a procedure for recognizing that language. Historically, they are also called compiler- 

compilers. 

YACC (yet another compiler-compiler) is an LALR(1) (LookAhead, Left-to-right, Rightmost 

derivation producer with 1 lookahead token) parser generator. YACC was originally designed for 

being complemented by Lex. 

 

Input File: 

YACC input file is divided in three parts. 

/* definitions */ 

.... 
 

 

%% 

/* rules */ 

.... 

%% 
 

 

/* auxiliary routines */ 

.... 

Input File: Definition Part: 

 The definition part includes information about the tokens used in the syntax definition: 

  %token NUMBER  
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 %token ID  

 Yacc automatically assigns numbers for tokens, but it can be overridden by 

 %token NUMBER 621  

 Yacc also recognizes single characters as tokens. Therefore, assigned token numbers should 

no overlap ASCII codes. 

 The definition part can include C code external to the definition of the parser and variable 

declarations, within %{and %} in the first column. 

 It can also include the specification of the starting symbol in the grammar: 

 %start nonterminal  

 The rules part contains grammar definition in a modified BNF form. 

 Actions is C code in { } and can be embedded inside (Translation schemes). 

Input File: Auxiliary Routines Part: 

 The auxiliary routines part is only C code. 
 It includes function definitions for every function needed in rules part. 

 It can also contain the main() function definition if the parser is going to be run as a program. 

 The main() function must call the function yyparse(). 

Input File: 

 If yylex() is not defined in the auxiliary routines sections, then it should be included: 
 #include "lex.yy.c"  

 YACC input file generally finishes with: 

  .y  

Output Files: 

 The output of YACC is a file named y.tab.c 

 If it contains the main() definition, it must be compiled to be executable. 

 Otherwise, the code can be an external function definition for the function int yyparse() 

 If called with the –d option in the command line, Yacc produces as output a header 

file y.tab.h with all its specific definition (particularly important are token definitions to be 

included, for example, in a Lex input file). 

 If called with the –v option, Yacc produces as output a file y.output containing a textual 

description of the LALR(1) parsing table used by the parser. This is useful for tracking down 

how the parser solves conflicts. 

 
Semantics 

Syntax Directed Translation: 

• A formalist called as syntax directed definition is used fort specifying translations for 

programming languageconstructs. 

• A syntax directed definition is a generalization of a context free grammar in which each 

grammar symbol has associated set of attributes and each and each productions is 

associated with a set of semanticrules 

Definition of (syntax Directed definition ) SDD : 
 

• SDD is a generalization of CFG in which each grammar productions X->α is associated with it a set of 

semantic rules of the form 

 

a: = f(b1,b2…..bk) 
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Where a is an attributes obtained from the function f. 

 

A syntax-directed definition is a generalization of a context-free grammar inwhich: 
 

• Each grammar symbol is associated with a set ofattributes. 
 

•  Thissetofattributesforagrammarsymbolispartitionedintotwosubsetscalledsynthesized 

and inherited attributes of that grammar symbol. 

• Each production rule is associated with a set of semanticrules. 
• Semantic rules set up dependencies between attributes which can be represented by a 

dependencygraph. 

• This dependency graph determines the evaluation order of these semanticrules. 

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may also 

have some side effects such as printing avalue. 

The two attributes for non terminalare : 

The two attributes for non terminalare : 

Synthesized attribute (S-attribute) :(↑) 
An attribute is said to be synthesized attribute if its value at a parse tree node is determined 

from attribute values at the children of the node 

Inherited attribute:(↑,→) 

 

An inherited attribute is one whose value at parse tree node is determined in terms of attributes at 

the parent and | or siblings of thatnode. 

 The attribute can be string, a number, a type, a, memory location or anythingelse. 

 The parse tree showing the value of attributes at each node is called an annotated 

parse tree. 

The process of computing the attribute values at the node is called annotating or decorating the 

parse tree.Terminals can have synthesized attributes, but not inherited attributes. 

Annotated Parse Tree 

• A parse tree showing the values of attributes at each node is called an Annotated parsetree. 

 

• The process of computing the attributes values at the nodes is called annotating(or 

decorating) of the parse tree. 

• Of course, the order of these computations depends on the dependency graph induced by 
the semanticrules. 

Ex1:1) Synthesized Attributes : Ex: Consider the CFG : 

S→ EN 

E→E+T 

E→E-T 

 

E→ T 

T→ T*F 

T→T/F 

T→F 

F→(E) 

F→digit N→; 
 



Automata & Compiler Design Page 28 
 

Solution: The syntax directed definition can be written for the above grammar by using semantic 

actions for each production 

Productionrule Semanticactions 
 

S→EN S.val=E.val 

E→E1+T E.val =E1.val +T.val 

E→E1-T E.val = E1.val –T.val 

E→T E.val=T.val 

T→T*F T.val = T.val *F.val 

T→T|F T.val =T.val | F.val 

F→ (E) F.val=E.val 

T→F T.val=F.val 
F→digit F.val =digit.lexval 

N→; can be ignored by lexical Analyzer as;I 

is terminating symbol 

For the Non-terminals E,T and F the values can be obtained using the attribute “Val”. 

The taken digit has synthesized attribute “lexval”. 

In S→EN, symbol S is the start symbol. This rule is to print the final answer of expressed. 

Following steps are followed to Compute S attributed definition 

Write the SDD using the appropriate semantic actions for corresponding production rule of the 

givenGrammar. 

The annotated parse tree is generated and attribute values are computed. The Computation is done 

in bottom upmanner. 

The value obtained at the node is supposed to be final output. 

 
L-attributed SDT 

This form of SDT uses both synthesized and inherited attributes with restriction of not taking values 

from right siblings. 

In L-attributed SDTs, a non-terminal can get values from its parent, child, and sibling nodes. As in 

the following production 
 

 

S can take values from A, B, and C (synthesized). A can take values from S only. B can take values 

from S and A. C can get values from S, A, and B. No non-terminal can get values from the sibling 

to its right. 

Attributes in L-attributed SDTs are evaluated by depth-first and left-to-right parsing manner. 
 

 

 

 

 

 

S → ABC 
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We may conclude that if a definition is S-attributed, then it is also L-attributed as L-attributed 

definition encloses S-attributed definitions 

Intermediate Code 

An intermediate code form of source program is an internal form of a program created by the 

compiler while translating the program created by the compiler while translating the program from 

a high –level language to assembly code(or)object code(machine code).an intermediate source form 

represents a more attractive form of target code than does assembly. An optimizing Compiler 

performs optimizations on the intermediate source form and produces an objectmodule. 

Analysis + syntheses=translation 

 

 

 
Createsan generate targe 

code Intermediatecode 

 

parser 
 

Static 
 

intermediate intermediate code 

 
 

 Checker  code generator 
code 

generator 

In the analysis –synthesis model of a compiler, the front-end translates a source program into an 

intermediate representation from which the back-end generates target code, in many compilers  

the source code is translated into a language which is intermediate in complexity between a HLL 

and machine code .the usual intermediate code introduces symbols to stand for various temporary 

quantities. 

 
We assume that the source program has already been parsed and statically checked..the various intermediate 

code forms are: 

a) Polishnotation 

b) Abstract syntax trees(or)syntaxtrees 

c) Quadruples 

d) Triples three address code 

e) Indirecttriples 

f) Abstract machinecode(or)pseudocopde 

postfix notation: 
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The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. the 

postfix (or postfix polish)notation for the same expression places the operator at the right end, 

asab+. 

In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2 is 

indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation because the 

position and priority (number of arguments) of the operators permits only one way to decode a 

postfixexpression. 

 

Syntax Directed Translation: 

• A formalist called as syntax directed definition is used fort specifying translations for 

programming languageconstructs. 

• A syntax directed definition is a generalization of a context free grammar in which each 

grammar symbol has associated set of attributes and each and each productions is 

associated with a set of semanticrules 

Definition of (syntax Directed definition ) SDD : 
 

SDD is a generalization of CFG in which each grammar productions X->α is associated with it a 

set of semantic rules of the form 

a: = f(b1,b2…..bk) 

Where a is an attributes obtained from the function f. 
 

• A syntax-directed definition is a generalization of a context-free grammar inwhich: 

• Each grammar symbol is associated with a set ofattributes. 

 

Thissetofattributesforagrammarsymbolispartitionedintotwosubsetscalledsynthesized 

and inherited attributes of that grammar symbol. 

• Each production rule is associated with a set of semanticrules. 

 

• Semantic rules set up dependencies between attributes which can be represented by a 

dependencygraph. 

Annotated Parse Tree 
 

• A parse tree showing the values of attributes at each node is called an Annotated parsetree. 
 

• The process of computing the attributes values at the nodes is called annotating(or 

decorating) of the parse tree.Of course, the order of these computations depends on the 

dependency graph induced by the 
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Syntax tree: 
 

 
 
 
 

Annotated parse tree : 
 
 

 

ASSIGNMENT STATEMENTS 
 

Suppose that the context in which an assignment appears is given by the following grammar. P 

M D 

M  ɛ 
D D ; D | id : T | proc id ; N D ; S 
N  ɛ 

Nonterminal P becomes the new start symbol when these productions are added to those in the 
translation scheme shown below. 

 

Translation scheme to produce three-address code for assignments 

 

S id := E { p : = lookup ( id.name); 

ifp≠nil then 

emit( p ‘ : =’ E.place) 

elseerror } 

E  E1 + E2 { E.place : = newtemp; 
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. . . 

S2.code 

. . . 

(b) if-then-else 

emit(E.place ‘: =’ E1.place ‘ + ‘ E2.place ) } 

E  E1 * E2 { E.place : = newtemp; 

emit(E.place ‘: =’ E1.place ‘ * ‘ E2.place ) } 

E - E1 { E.place : = newtemp; 

emit ( E.place ‘: =’ ‘uminus’ E1.place ) } 

E ( E1 ) { E.place : = E1.place } 

 
E  id { p : = lookup ( id.name); 

ifp≠nil then 

E.place : = p 

elseerror } 
Flow-of-Control Statements 

 
We now consider the translation of boolean expressions into three-address code in the context of if- 
then, if-then-else, and while-do statements such as those generated by the following grammar: 

 

S if E then S1 

 
| 

if E then S1 else 

S2 

| while E do S1 
In each of these productions, E is the Boolean expression to be translated. In the translation, we 
assume that a three-address statement can be symbolically labeled, and that the function 
newlabelreturns a new symbolic label each time it is called. 

• E.true is the label to which control flows if E is true, and E.false is the label to which control 
flows if E is false. 

 

• The semantic rules for translating a flow-of-control statement S allow control to flow from 
the translation S.code to the three-address instruction immediately following S.code. 

• S.nextis a label that is attached to the first three-address instruction to be executed after the 
code for Code for if-then , if-then-else, and while-do statements 

 

 

 

 

 

 

 

 

 

 
 

 
E.false: 

E.false: 

 
S.next: 

 

(a) if-then 
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S.begin: E.code to E.true 

 

E.true: 
 

S1.code 
to E.false 

 gotoS.begin  

E.false: . . .  

(c) while-do 
 

PRODUCTION SEMANTIC RULES 
 



S if E then S1 E.true : = newlabel; 

 E.false : = S.next; 

 S1.next : = S.next; 



S if E then S1else S2 

S.code : = E.code || gen(E.true „:‟) || S1.code 

E.true : = newlabel; 
 E.false : = newlabel; 

 S1.next : = S.next; 

 S2.next : = S.next; 
 S.code : = E.code || gen(E.true „:‟) || S1.code || 

 gen(„goto‟ S.next) || 

 


S whileE do S1 

gen( E.false „:‟) || S2.code 

S.begin : = newlabel; 
 E.true : = newlabel; 

 E.false : = S.next; 

 S1.next : = S.begin; 
 S.code : = gen(S.begin „:‟)|| E.code || 

 gen(E.true „:‟) || S1.code || 

 gen(„goto‟ S.begin) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 


